Comparison of Spatial Interpolation and Regression Analysis Models for an Estimation of Monthly Near Surface Air Temperature in China
نویسندگان
چکیده
Near surface air temperature (NSAT) is a primary descriptor of terrestrial environmental conditions. In recent decades, many efforts have been made to develop various methods for obtaining spatially continuous NSAT from gauge or station observations. This study compared three spatial interpolation (i.e., Kriging, Spline, and Inversion Distance Weighting (IDW)) and two regression analysis (i.e., Multiple Linear Regression (MLR) and Geographically Weighted Regression (GWR)) models for predicting monthly minimum, mean, and maximum NSAT in China, a domain with a large area, complex topography, and highly variable station density. This was conducted for a period of 12 months of 2010. The accuracy of the GWR model is better than the MLR model with an improvement of about 3 ◦C in the Root Mean Squared Error (RMSE), which indicates that the GWR model is more suitable for predicting monthly NSAT than the MLR model over a large scale. For three spatial interpolation models, the RMSEs of the predicted monthly NSAT are greater in the warmer months, and the mean RMSEs of the predicted monthly mean NSAT for 12 months in 2010 are 1.56 ◦C for the Kriging model, 1.74 ◦C for the IDW model, and 2.39 ◦C for the Spline model, respectively. The GWR model is better than the Kriging model in the warmer months, while the Kriging model is superior to the GWR model in the colder months. The total precision of the GWR model is slightly higher than the Kriging model. The assessment result indicated that the higher standard deviation and the lower mean of NSAT from sample data would be associated with a better performance of predicting monthly NSAT using spatial interpolation models.
منابع مشابه
Air temperature estimation based on environmental parameters using remote sensing data
This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the...
متن کاملAn Estimate of the Sampling Error Variance of the Gridded GHCN Monthly Surface Air Temperature Data
The sampling error variances of the 5° 5° Global Historical Climatological Network (GHCN) monthly surface air temperature data are estimated from January 1851 to December 2001. For each GHCN grid box and for each month in the above time interval, an error variance is computed. The authors’ error estimation is determined by two parameters: the spatial variance and a correlation factor determined...
متن کاملModeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملComparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea
In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017